當(dāng)前位置:工程項目OA系統(tǒng) > 建筑OA系統(tǒng) > 材料管理軟件
兩性羧酸類接枝共聚物混凝土超塑化劑的性能研究
2。1 兩性羧酸類接枝共聚物超塑化劑的設(shè)計理念 本課題組和國外學(xué)者經(jīng)過大量試驗證實[1-3] :具有短接枝側(cè)鏈的梳形共聚物由于空間位阻效應(yīng)較弱,其分散性能較低,但分散保持性很好,而具有較長接枝側(cè)鏈的共聚物,由于空間位阻效應(yīng)很強對早期流動性能有利。因此要提高其分散性能必須在主鏈中引入大量的長聚醚側(cè)鏈提供空間位阻,從而可以提供其良好的分散性能。 水泥體系是高鹽、高pH 值體系,傳統(tǒng)的羧酸類接枝共聚物分子構(gòu)象受到鹽濃度尤其是Ca2+的影響很大,如果構(gòu)象在水泥體系中比較蜷曲[1],則吸附比較慢,同時提供的空間位阻也比較低,不利于混凝土分散。因此借鑒兩性聚電解質(zhì)[4](結(jié)構(gòu)模型如圖1)的研究思路和研究成果,把羧酸類接枝共聚物主鏈設(shè)計成兩性聚合物,降低其對無機鹽離子的敏感性,保持其伸展構(gòu)象。而且水泥不同礦物組分帶電性能不同,兩性共聚物可以在帶正電或負(fù)電的礦物表面吸附,從而提高其分散性能和飽和摻量。 在共聚物中提高了長側(cè)鏈的比例,必然導(dǎo)致其坍落度保持能力降低。在共聚物中通過引入能夠發(fā)生交聯(lián)反應(yīng)的聚合物或單體,使得羧酸聚合物發(fā)生部分交聯(lián)反應(yīng),部分交聯(lián)后的羧酸類共聚物在水泥漿體的堿性環(huán)境中水解,逐漸轉(zhuǎn)化為具有分散功能的低分子聚合物,從而達到提高坍落度保持性能的目的。通過調(diào)整陰陽離子相對比例,也可以改變接枝共聚物在水泥顆粒上的吸附狀態(tài),從而有利于改善其坍落度保持性能。2。2 試驗部分
2。2。1 試驗原材料 水泥 :江南水泥廠生產(chǎn)的金寧羊425 R.P.Ⅱ;砂 :細(xì)度模數(shù)Mx=2.6 的中砂;石子:玄武巖,粒徑為5~20 mm 連續(xù)級配的碎石;混凝土外加劑:兩性聚羧酸系超塑化劑JM-PCA(II)和萘磺酸鹽甲醛縮合物FDN,蘇博特新材料公司生產(chǎn)。2。2。2 混凝土性能 采用國家標(biāo)準(zhǔn)GB 8076-1997《混凝土外加劑》規(guī)定的配合比檢測聚羧酸外加劑減水率時,配制的混凝土和易性差,離析嚴(yán)重,不能準(zhǔn)確測定其減水率[5]。因此在測外加劑減水率、泌水率、含氣量、凝結(jié)時間、抗壓強度時,采用JC 473-2001《混凝土泵送劑》規(guī)定的配合比?;鶞?zhǔn)混凝土和受檢混凝土坍落度控制在10±1cm,試驗方法參照GB 8076-1997《混凝土外加劑》的相關(guān)規(guī)定執(zhí)行。坍落度及坍落度損失參照J(rèn)C 473-2001《混凝土泵送劑》相關(guān)規(guī)定執(zhí)行,加水量則以控制坍落度為21±1 cm為準(zhǔn)(外加劑以有效固體份計量),并同時把基準(zhǔn)混凝土控制在18±2cm,并估測其減水率。2。2。3 孔結(jié)構(gòu)分析 固定加水量(水灰比0.29),分別制備純水泥漿及摻加不同種類外加劑的水泥凈漿,拆模后試件標(biāo)養(yǎng)護所需齡期,采用Quantachrome 公司的壓汞儀Poremaster對不同齡期水化產(chǎn)物的孔結(jié)構(gòu)進行分析。2。2。4 水化熱測試 按照GB 2022-1980 標(biāo)準(zhǔn)的規(guī)定,采用法國SETARAM 公司C80 微量測熱儀器測定摻不同種類外加劑的水泥漿體水化放熱性能。3 結(jié)果與討論3。1 兩性羧酸類接枝共聚物超塑化劑摻量對混凝土性能的影響 對兩性羧酸類接枝共聚物超塑化劑JM-PCA(II),采用兩種不同檢驗方法對摻量與混凝土性能的關(guān)系進行了檢測,如表1 和表2 所示。 試驗結(jié)果看出,JM-PCA(II)減水率隨摻量的增加而提高,當(dāng)摻水泥用量的0.2%時,其減水率接近30%,但是此時坍落度有一定的損失;當(dāng)摻量提高到0.3%,混凝土減水率達到了38% 左右,此時1h坍落度基本不損失 ;但摻量提高到0.4% 時,減水率達到了40% 以上。JM-PCA(II)基本不影響混凝土的凝結(jié)時間,其保坍機理不是依靠傳統(tǒng)的緩凝技術(shù)實現(xiàn)的。而且摻JM-PCA(II)的混凝土增強效果十分突出,隨摻量的增加,其增強效果愈發(fā)明顯,這和以前研制的JM-PCA(I)型超塑化劑不一樣。JM-PCA(I)的飽和摻量低[6],而且隨摻量增加減水率提高幅度較小,其強度也基本不再增加。 水泥體系中不同礦物成分具有不同的電荷性能[7-8],C3S 和C2S 的ζ電位為負(fù)(約-5mV)而C3A 和C4AF 的z 電位為正(約+5mV 到+10mV)。筆者認(rèn)為傳統(tǒng)陰離子型超塑化劑主要在具有正z 電位的C3A和C4AF礦物成分上吸附,而構(gòu)成水泥主要的礦物成份C3S 和C2S 對陰離子型聚合物吸附能力較弱,這樣水泥很容易達到飽和吸附,因此外加劑摻量進一步增加時,分散性能很難再有所提高。而JM-PCA(II)超塑化劑主鏈上不但具有相當(dāng)?shù)年庪x子基團,而且?guī)в嘘栯x子基團。由于其陰離子基團含量高,可以被C3A 和C4AF 礦物相優(yōu)先吸附,當(dāng)C3A 和C4AF礦物相達到飽和吸附后,溶液中的共聚物中可以利用其陽離子基團進一步被帶負(fù)z電位的C3S和C2S的礦物相吸附,因此增加外加劑的摻量,其減水性能可以進一步提高,即提高了其飽和摻量。但這些作用機理還有待進一步研究構(gòu)成水泥的不同單礦物對不同帶電性質(zhì)的聚合物的吸附行為來進行證實。3。2 硬化漿體的孔結(jié)構(gòu)分析 混凝土的孔結(jié)構(gòu)特征變化對混凝土的物理、力學(xué)性能(如密度、導(dǎo)熱性、強度、變形等)和滲透性及耐久性有十分重要的影響。孔隙特征可用孔結(jié)構(gòu)來描述,而孔結(jié)構(gòu)主要包括三方面內(nèi)容:孔隙率,孔形貌,孔大小及其分布。 由圖2可見,在3天中止水化后的孔徑測試中,變化最為明顯的就是在有害孔徑和少害孔徑的數(shù)量變化上。對于純水泥,其最可幾孔徑58 nm 落在了有害孔徑的范圍內(nèi),并且基準(zhǔn)試樣的孔徑分布曲線較為寬化,表明其有害孔徑數(shù)量較多;而單摻FDN減水劑后,水泥石硬化體的孔徑分布發(fā)生了改變,其最可幾孔徑減小為40 nm,略小于有害孔徑的范圍。摻入一定量JM-PCA(II)后,明顯改善了水泥石的孔隙結(jié)構(gòu),樣品的最可幾孔徑約為35 nm,且峰形變窄,說明一定量的JM-PCA(II)能明顯改善水泥石的孔結(jié)構(gòu)。標(biāo)養(yǎng)28 d后水泥石的最可幾孔徑都明顯減小了,其中基準(zhǔn)試樣孔徑減小為45 nm,而FDN減水劑28 d的孔徑相對于3 d沒有明顯的減小,摻0.3%JM-PCA(II)超塑化劑試件經(jīng)28 d標(biāo)養(yǎng)后其孔徑持續(xù)減小,基本沒有了有害孔和無害孔。這不但提高了混凝土的力學(xué)性能,而且對改善混凝土的耐久性尤其是提高其抗?jié)B性很有好處。3。3 水化熱分析 在混凝土中摻加高效減水劑不但改善水泥漿體的孔結(jié)構(gòu),提高混凝土的力學(xué)性能,而且對水泥的水化產(chǎn)生很大的影響。采用法國SETARAM 公司的C80 微量測熱儀器測試了純水泥漿和摻加FDN 和JM-PCA(II)外加劑的水泥漿的水化熱,表3 與圖3、圖4描述了不同外加劑對水泥水化放熱規(guī)律的影響。 外加劑直接影響水泥水化速度,水化越快,水化熱釋放也越快。不摻外加劑的水泥,15 h之內(nèi)水化熱釋放很快達到峰值,峰值溫度達到38.9℃,這種情況對需要溫控的大體積混凝土是極其不利的;摻萘系減水劑1d 放熱量下降了8.5%,但水化熱釋放較快,峰值溫度達到37.8℃;而摻JM-PCA(II)外加劑后,其1 d和7 d水化熱降低最為明顯,降低了30%,24 h 左右達到水化放熱峰,峰值溫度為35.1℃,比純水泥的水化熱峰值明顯延緩并且峰值有所降低,且從表1來看,并不影響水泥的凝結(jié)時間??梢?,新型聚羧酸系高效減水劑JM-PCA(II)可以使得水化熱平緩釋放,溫度極值下降,對于大體積混凝土的溫控具有很好的效果。 4 結(jié)論 (1) 兩性羧酸類接枝共聚物超塑化劑JM-PCA(II)在很低的摻量范圍內(nèi)(水泥用量的0.2%~0.4%)具有很高的減水率。摻量為0.2%時,減水率達到30%;摻量為水泥的0.40% 時,減水率可到40% 以上;當(dāng)摻量≥0.30%時,1 h坍落度基本不損失。摻量的增加并不延長混凝土的凝結(jié)時間,且無論是早期或中后期強度都增長比較穩(wěn)定。每方混凝土僅采用390kg 低水泥用量就實現(xiàn)了C80 強度等級混凝土的配制。 (2) 對水泥石的結(jié)構(gòu)進行了分析,結(jié)果表明摻JM-PCA(II)超塑化劑其孔徑持續(xù)減小,28d 后基本沒有有害孔和無害孔,這對改善混凝土的耐久性尤其是提高其抗?jié)B性很有好處。 (3) 水化熱測試結(jié)果表明,摻加新型聚羧酸系高效減水劑JM-PCA(II)后,可以使得水化熱平緩釋放,溫度極值下降,其1 d和7 d水化熱都降低了30%,對于大體積混凝土的溫控具有很好的效果。 (4) 為了更好地開發(fā)新型高性能混凝土外加劑,有待一步研究兩性羧酸類接枝共聚物超塑化劑的吸附分散機理。
|
|
|
|
- 1205國道新沂改線段某立交橋?qū)嵤┬允┕そM織設(shè)計
- 2建筑業(yè)十項新技術(shù)<br>之鋼與混凝土組合結(jié)構(gòu)技術(shù)
- 3ETABS在杭州來福士廣場塔樓結(jié)構(gòu)設(shè)計中的應(yīng)用
- 4地下室防水包括:結(jié)構(gòu)自防水
- 5外腳手架施工方案 25P
- 6湖南機械介紹混凝土泵的正確維護
- 72013年1-4月中國大型型鋼產(chǎn)量分省市統(tǒng)計
- 8[博士]大跨度鋼箱拱橋的施工控制關(guān)鍵技術(shù)與動力特性研究
- 9混凝土罐車污染地面被查
- 10框剪病房樓施工組織設(shè)計方案121p
- 11某住宅樓改造工程施工組織設(shè)計 38p
- 12二級公路工程竣工報告
- 132013年1-12月上海市人造板表面裝飾板產(chǎn)量統(tǒng)計(分月度)
- 14某群體工程施工組織設(shè)計
- 15火災(zāi)逃生的四個要點是什么?
- 16某大型建材企業(yè)員工手冊(2008版)
- 17雙HZS120混凝土攪拌站效率精度雙高
- 18某建筑企業(yè)工藝紀(jì)律規(guī)定
- 19探討工程項目采購管理過程中的問題及其對策
- 20[碩士]城市常規(guī)公交與軌道交通接駁線路優(yōu)化研究
- 21混凝土罐車打不著火是怎么回事啊
- 222013年平?jīng)鲈靸r工程師報名時間為6月26日-7月26日
- 232009年1-2月中國分不同地區(qū)住宅建設(shè)情況
- 24項目決策分析與評價知識點:機會研究
- 25通過橋梁靜載試驗來評定橋梁的使用性能與承載能力
- 26寧波市某公鐵立交橋工程(投標(biāo))施工組織設(shè)計
- 27某大型石化制氫裝置施工組織設(shè)計
- 28濟南某醫(yī)院30層剪力墻高層住宅土建施工組織設(shè)計
- 29二級配電箱是分配電箱嗎?
- 30武漢新博工程咨詢因重大建筑施工事故被罰款120萬
成都公司:成都市成華區(qū)建設(shè)南路160號1層9號
重慶公司:重慶市江北區(qū)紅旗河溝華創(chuàng)商務(wù)大廈18樓