工程項(xiàng)目管理系統(tǒng) | OA系統(tǒng) | ERP系統(tǒng) | 工程項(xiàng)目管理軟件 | 裝飾管理系統(tǒng) | 簽約案例 | 購(gòu)買價(jià)格 | 在線試用 | 手機(jī)APP | 產(chǎn)品資料
X 關(guān)閉
工程項(xiàng)目管理軟件系統(tǒng)

當(dāng)前位置:工程項(xiàng)目OA系統(tǒng) > 建筑OA系統(tǒng) > 工程項(xiàng)目管理軟件系統(tǒng)

北嶺地震和販神地震后美日鋼框架節(jié)點(diǎn)設(shè)計(jì)的改進(jìn)

申請(qǐng)免費(fèi)試用、咨詢電話:400-8352-114

  摘要:本文介紹1994年美國(guó)北嶺地震和1995年日本限神地震引起的鋼框架梁柱節(jié)點(diǎn)破壞情況,壞原因探討,設(shè)計(jì)改進(jìn)措施,兩國(guó)構(gòu)造的異同和我國(guó)的相關(guān)對(duì)策等。

  關(guān)鍵詞:鋼框架震害節(jié)點(diǎn)設(shè)計(jì)襯板

  1.前言

  1994年1月17日發(fā)生在美國(guó)加州圣費(fèi)南多谷地的北嶺地震(Northridge Earthquake)和正好一年后1995年1月17日發(fā)生在日本兵庫(kù)縣南部地區(qū)的阪神地震(Hyogoken-Nanbu Earthquake)是兩次陸域型強(qiáng)震,都導(dǎo)致了焊接鋼框架梁-柱附性連接節(jié)點(diǎn)的廣泛破壞。震后兩國(guó)進(jìn)行了大量的調(diào)查和研究,揭示了破壞的原因,在此基礎(chǔ)上提出了改進(jìn)鋼框架節(jié)點(diǎn)設(shè)計(jì)的技術(shù)措施。兩國(guó)在此期間都發(fā)表了不少論文,所作的討論開(kāi)拓了人們的眼界,提供了對(duì)鋼框架的節(jié)點(diǎn)設(shè)計(jì)的更多了解,對(duì)今后鋼框架節(jié)點(diǎn)設(shè)計(jì)有深遠(yuǎn)的影響。我們受中國(guó)建筑科學(xué)研究院抗震所委托,對(duì)有關(guān)資料進(jìn)行了搜集、整理和歸納,現(xiàn)將其主要內(nèi)容在此作一介紹。

  2.美日兩國(guó)鋼框架節(jié)點(diǎn)的破壞情況

  兩國(guó)鋼框架破壞情況的報(bào)導(dǎo),主要集中在梁柱混合連接節(jié)點(diǎn)上,因此本文也以梁柱混合連接為主要對(duì)象?;旌线B接是一種現(xiàn)場(chǎng)連接,其中梁翼緣與柱用全熔透坡口對(duì)接焊縫連接,梁腹板通過(guò)連接板與柱用高強(qiáng)度螺栓連接。美國(guó)慣常采用焊接工字形柱,日本則廣泛采用箱形柱,僅在一個(gè)方向組成剛架時(shí)采用工字形柱。在梁翼緣連接處,工字形柱腹板上要設(shè)置加勁肋(美國(guó)稱為連續(xù)板),在箱形柱中則要設(shè)置隔板。

  美、日兩國(guó)梁杠混合連接節(jié)點(diǎn)的典型構(gòu)造。在節(jié)點(diǎn)設(shè)計(jì)上,兩國(guó)都采用彎矩由翼緣連接承受和剪力由腹板連接承受的設(shè)計(jì)方法,美國(guó)還規(guī)定,當(dāng)梁翼緣承受的彎矩小于截面總彎矩的70%或梁腹板承受的彎矩大于截面總彎矩的30%時(shí),要將梁腹板與連接板的角部用角焊縫焊接。日本則規(guī)定腹板螺栓連接應(yīng)按保有耐力即框架達(dá)到塑性階段時(shí)的承載力設(shè)計(jì),螺栓應(yīng)設(shè)置2-3列,也是為了考慮腹板可能承受的的彎矩。梁翼緣處的柱加勁肋,美國(guó)過(guò)去根據(jù)傳力的需要由計(jì)算確定,其截面較小。日本根據(jù)構(gòu)造要求采用,其截面較大。

  2.1美國(guó)北嶺地震后對(duì)剛框架節(jié)點(diǎn)破壞的調(diào)查

  從70年代以來(lái),美國(guó)采用高強(qiáng)螺栓聯(lián)接鋼框架已很普遍,北嶺地震后出現(xiàn)破壞的有100多幢[3](有的報(bào)導(dǎo)說(shuō)90多幢[7]、150多幢[1]或200多幢[5])。為了弄清破壞的原因,北嶺地震后不久,在美國(guó)聯(lián)邦應(yīng)急管理局(FEMA)資肋下,有加州結(jié)構(gòu)工程協(xié)會(huì)(SEAOC)、應(yīng)用技術(shù)研究會(huì)(ATC)和加州一些大學(xué)的地震工程研究單位(CU)等組成了被稱為SAC和聯(lián)合動(dòng)機(jī)構(gòu),對(duì)此開(kāi)展了深入調(diào)查和研究,以便弄清破壞原因和提出改進(jìn)措施。

  美國(guó)的鋼框架梁-柱連接,在50年代多采用鉚釘連接,60年代逐步改用高強(qiáng)度螺栓連接。為了評(píng)估栓焊混合連接的有效性,曾進(jìn)行過(guò)一系列試驗(yàn),這種由翼緣焊縫抗彎和腹板螺栓連接抗剪的節(jié)點(diǎn),美國(guó)以前規(guī)定其塑性轉(zhuǎn)角應(yīng)達(dá)到O.015rad(≈1/65),但大量試驗(yàn)表明,塑性轉(zhuǎn)角的試驗(yàn)結(jié)果很離散,且出現(xiàn)了早期破壞,總的說(shuō)來(lái)性能很不穩(wěn)定。北嶺地震前,德州大學(xué)教授Engelhardt就曾對(duì)這種連接在大震時(shí)的性能產(chǎn)生疑問(wèn),指出在大震時(shí)要密切注意,對(duì)它的的設(shè)計(jì)方法和連接構(gòu)造要進(jìn)行改進(jìn)[7].北嶺地震證實(shí)了這一疑慮,為此SAC通過(guò)柏克萊加州大學(xué)地震工程研究中心(EERC)等4個(gè)試驗(yàn)場(chǎng)地,進(jìn)行了以了解震前節(jié)點(diǎn)的變形響應(yīng)和修復(fù)性能為目的的足尺試驗(yàn)和改進(jìn)后的節(jié)點(diǎn)試驗(yàn)。對(duì)北嶺地震前通常做法的節(jié)點(diǎn)及破壞后重新修復(fù)節(jié)點(diǎn)的試驗(yàn)表明全部試驗(yàn)都觀察到了與現(xiàn)場(chǎng)裂縫類似的早期裂縫,試驗(yàn)的特性曲線亦與以前的試驗(yàn)結(jié)果相同,梁的塑性轉(zhuǎn)動(dòng)能力平均為0.05弧度,是SAC經(jīng)過(guò)研究后確定的目標(biāo)值0.03弧度的1/6,說(shuō)明北嶺地震前鋼框架節(jié)點(diǎn)連接性能很差,這與地震中的連接破壞是吻合的。而且破壞前沒(méi)有看到或很少看到有延性表現(xiàn),與設(shè)想能發(fā)展很大延性e6鋼框架設(shè)計(jì)意圖是違背的。焊接鋼框架節(jié)點(diǎn)的破壞,主要發(fā)生在梁的下翼緣,而且一般是由焊縫根部萌生的脆性破壞裂紋引起的。裂紋擴(kuò)展的途徑是多樣的,由焊根進(jìn)入母材或熱影響區(qū)。一旦翼緣壞了,由螺栓或焊縫連接的剪力連接板往往被拉開(kāi),沿連接線由下向上擴(kuò)展。最具潛在危險(xiǎn)的是由焊縫根部通過(guò)柱翼緣和腹板擴(kuò)展的斷裂裂縫。

  從破壞的程度看,可見(jiàn)裂縫約占20-30%,大量的是用超聲波探傷等方法才能發(fā)現(xiàn)的不可見(jiàn)裂紋。裂紋在上翼緣和下翼緣之間出現(xiàn)的比例為1:5-1:20,在焊縫和母材上出現(xiàn)的比例約為1:10到1:100.一般認(rèn)為,混凝土樓板的組合作用減小了上翼緣的破壞,也有人認(rèn)為上翼緣焊縫根部不象下翼緣那樣位于梁的最外側(cè),因此焊根中引起的應(yīng)力較低,減少了上翼緣破壞的概率[1].美國(guó)斯坦福大學(xué)Krawinkler教授對(duì)北嶺地震中幾種主要連接破壞形式作了歸納,由下翼緣焊縫根部開(kāi)始出現(xiàn)的這樣或那樣的破壞,最多的是沿焊縫金屬的邊緣破壞,另有沿柱翼緣表面附近裂開(kāi)的剝離破壞,也有沿腹板板切角端部開(kāi)始的梁翼緣斷裂破壞,或從柱翼緣穿透柱腹板的斷裂破壞。

  北嶺地震雖然沒(méi)有使鋼框架房屋倒塌,也沒(méi)有因鋼框架節(jié)點(diǎn)破壞引起人身傷亡,但使業(yè)主和保險(xiǎn)公司支付了大量的修復(fù)費(fèi)用。僅就檢查費(fèi)用而言,不需挪動(dòng)石棉時(shí)為每個(gè)節(jié)點(diǎn)800-1000美元,需挪動(dòng)石棉時(shí)為每個(gè)節(jié)點(diǎn)1000-2000美元,對(duì)于有石膏抹灰和吊頂?shù)母呒?jí)住宅,每個(gè)節(jié)點(diǎn)達(dá)2000-5000美元,修復(fù)費(fèi)用更高211.更重要的當(dāng)然是對(duì)過(guò)去長(zhǎng)期沿用的節(jié)點(diǎn)在抗震中的安全問(wèn)題提出了疑問(wèn),必須認(rèn)真研究和解決。

  2.2日本販神地震后對(duì)鋼框架節(jié)點(diǎn)破壞的調(diào)查

  阪神地震后,日本建設(shè)省建筑研究所成立了地震對(duì)策本部,組織了各方面人士多次參加的建筑應(yīng)急危險(xiǎn)度和震害的調(diào)查,民間有關(guān)團(tuán)體也開(kāi)展了各類領(lǐng)域的震害調(diào)查,但因鋼結(jié)構(gòu)相對(duì)于其它結(jié)構(gòu)的震害較少,除新發(fā)現(xiàn)了鋼柱脆斷或柱腳拔起外,鋼框架節(jié)點(diǎn)的破壞主要表現(xiàn)在扇形切角(scallop)工藝孔部位,但因結(jié)構(gòu)體被內(nèi)外裝修所隱蔽,一般業(yè)主、設(shè)計(jì)或施工人員對(duì)此震害調(diào)查不太積極,對(duì)鋼框架系統(tǒng)震害的調(diào)查遇到一定困難。僅管如此,日本學(xué)者還是就腹板切角工藝孔方面的問(wèn)題進(jìn)行了探索,如日本建筑學(xué)會(huì)結(jié)構(gòu)連接委員會(huì)和鋼材俱樂(lè)部等單位,專就工藝孔破壞狀態(tài)等問(wèn)題作了系統(tǒng)深入的研究。

  日本對(duì)于混合連接的研究,早在1978年以后的石油危機(jī)中,就曾利用建筑處于低潮機(jī)會(huì)結(jié)合自屏蔽電弧焊的出現(xiàn)和應(yīng)用,系統(tǒng)地開(kāi)展過(guò)。進(jìn)入90年代后,隨著高層、超高層和大跨度鋼結(jié)構(gòu)建筑的增多,梁柱截面增大,若采用過(guò)去的梁懸臂段形式,由于運(yùn)輸尺寸上的限制,懸臂長(zhǎng)度大致不能超過(guò)1m;另一方面,由于梁翼緣板厚增大,拼接螺栓增多,結(jié)果梁端至最近螺栓的距離只有500mm左右,截面受到很大削弱,對(duì)保證梁端塑性變形很不利。這樣,在大型鋼結(jié)構(gòu)工程中,現(xiàn)在較多采用梁與柱的混合連接。圖1是采用箱形柱時(shí)的混合連接示意圖梁翼緣與箱形柱隔板直接焊接[7].日本在美國(guó)北嶺地震前不久,曾對(duì)此種連接進(jìn)行了試驗(yàn)研究,結(jié)果表明,梁端翼緣焊縫處的破壞幾乎都是在梁下翼緣從扇形切角工藝孔端開(kāi)始的,沒(méi)有看到象在美國(guó)試驗(yàn)中和地震中出現(xiàn)的沿焊縫金屬及其邊緣破壞的情況,通過(guò)試驗(yàn)和版神地震觀察到的梁端工藝孔處的裂縫發(fā)展情況。

  日本鋼材俱樂(lè)部研究了扇形切角工藝孔帶襯板及底部有焊縫的兩種節(jié)點(diǎn)試驗(yàn)。

  美、日兩國(guó)鋼框架在地震中的梁柱節(jié)點(diǎn)破壞形式是有區(qū)別的,北嶺地震中的裂縫多向柱段范圍擴(kuò)展,而阪神地震中的裂縫則多向梁段范圍發(fā)展。對(duì)兩國(guó)節(jié)點(diǎn)破壞情況的這種差異與其與構(gòu)造差異的關(guān)系,還有待進(jìn)一步探討。

  3.節(jié)點(diǎn)破壞原因與分析

  北嶺地震后,美日兩國(guó)學(xué)者就節(jié)點(diǎn)破壞原因,通過(guò)現(xiàn)場(chǎng)調(diào)查、室內(nèi)試驗(yàn)和現(xiàn)場(chǎng)檢驗(yàn),進(jìn)行了結(jié)構(gòu)響應(yīng)分析、有限元分析、斷裂力學(xué)分析等,還作了很多補(bǔ)充試驗(yàn),結(jié)合震前研究,對(duì)節(jié)點(diǎn)破壞原因提出了一些看法。首先認(rèn)為節(jié)點(diǎn)破壞與加勁板、補(bǔ)強(qiáng)板腹板附加焊縫等的變動(dòng),并沒(méi)有什么直接關(guān)系,也并不是僅由設(shè)計(jì)或施工不良所能說(shuō)明的,而是應(yīng)從節(jié)點(diǎn)本身存在根本性缺陷方面去找原因。有以下幾方面因素,被認(rèn)為是決定和和影響節(jié)點(diǎn)性能而導(dǎo)致了破壞。

  3.1焊縫金屬?zèng)_擊韌性低[3]

  美國(guó)北嶺地震前,焊縫多采用E70T-4或E70T-7自屏蔽藥芯焊條施焊,這種焊條提供的最小抗拉強(qiáng)度480MPa,恰帕沖擊韌性無(wú)規(guī)定,試驗(yàn)室試件和從實(shí)際破壞的結(jié)構(gòu)中取出的連接試件在室溫下的試驗(yàn)表明,其沖擊韌性往往只有10-15J,這樣低的沖擊韌性使得連接很易產(chǎn)生脆性破壞,成為引發(fā)節(jié)點(diǎn)破壞的重要因素。在北嶺地震后不久所作的大型驗(yàn)證性試驗(yàn),對(duì)焊縫進(jìn)行十分仔細(xì)的操作,做到了確保焊接質(zhì)量,排除了焊接操作產(chǎn)生的影響。焊縫采用E70T-4型低韌性焊條,盡管焊接操作的質(zhì)量很高,連接還是出現(xiàn)了早期破壞,從而證明了焊接縫金屬?zèng)_擊韌性低,是焊接破壞的因素之一。

  3.2焊縫存在的缺陷[3]

  對(duì)破壞的連接所作調(diào)查表明,焊接質(zhì)量往往很差,很多缺陷可以看出明顯違背了規(guī)范規(guī)定的焊接質(zhì)量要求,不但焊接操作有問(wèn)題,焊縫檢查也有問(wèn)題。很多缺陷說(shuō)明,裂縫萌生在下翼緣焊縫中腹板的焊條通過(guò)孔附近,該處的下翼緣焊縫是中斷的,使缺陷更為明顯。該部位進(jìn)行超聲波檢查也比較困難,因?yàn)榱焊拱宸恋K探頭的設(shè)置。因此,主要的連接焊縫中由于施焊困難和探傷困難出現(xiàn)了質(zhì)量極差的部位。上冀緣焊縫的施焊和探傷不存在梁腹板妨礙的問(wèn)題,因此可以認(rèn)為是上翼緣焊縫破壞較少的原因之一。

  3.3坡口焊縫處的襯板和引弧板造成人工縫[4]

  實(shí)際工程中,往往焊接后將焊接襯板留在原處,這種做法已經(jīng)表明,對(duì)連接的破壞具有重要影響。在加州大學(xué)進(jìn)行的試驗(yàn)表明,襯板與柱翼緣之間形成一條未熔化的垂直界面,相當(dāng)于一條人工縫,在梁翼緣的拉力作用下會(huì)使該裂縫擴(kuò)大,引起脆性破壞。其它人員的研究也得出相同結(jié)果。

  1995年加州大學(xué)Popov等所作的試驗(yàn),再現(xiàn)了節(jié)點(diǎn)的脆性破壞,破裂的速度很高,事前并無(wú)延性表現(xiàn),因此破壞是災(zāi)難性的。研究指出,受拉時(shí)切口部位應(yīng)力最大,破壞是三軸應(yīng)力引起的,表現(xiàn)為脆性破壞,外觀無(wú)屈服。他們還通過(guò)有限元模擬計(jì)算,得出最大應(yīng)力集中系數(shù)出現(xiàn)在梁緣焊接襯板連接處中部,破壞時(shí)裂縫將從應(yīng)力集中系數(shù)最大的地方開(kāi)始,此一結(jié)論已為試驗(yàn)所證實(shí)。研究表明:大多數(shù)節(jié)點(diǎn)破壞都起源于下部襯板處。引弧板同樣也會(huì)引發(fā)裂縫。

  3.4梁翼緣坡口焊縫出現(xiàn)的超應(yīng)力[3]

  北嶺地震后對(duì)震前節(jié)點(diǎn)進(jìn)行的分析表明,當(dāng)梁發(fā)展到塑性彎矩時(shí),梁下翼緣坡口焊縫處會(huì)出現(xiàn)超高應(yīng)力。超應(yīng)力的出現(xiàn)因素有:當(dāng)螺栓連接的腹板不足以參加彎矩傳遞時(shí),柱翼緣受彎導(dǎo)致梁翼緣中段存在著較大的集中應(yīng)力;在供焊條通過(guò)的焊接工藝孔處,存著附加集中應(yīng)力;據(jù)觀察,有一大部分剪力實(shí)際是由翼緣焊縫傳遞,而不是象通常設(shè)計(jì)假設(shè)的那樣由腹板的連接傳遞。梁翼緣坡口焊縫的應(yīng)力很高,很可能對(duì)節(jié)點(diǎn)破壞起了不利影響。Popov[4]采用8節(jié)點(diǎn)塊體單元有限元模擬分析發(fā)現(xiàn),節(jié)點(diǎn)應(yīng)力分布的最高應(yīng)力點(diǎn),是在梁的翼緣焊縫處和節(jié)點(diǎn)板域,節(jié)點(diǎn)板域的屈服從中心開(kāi)始,然后向四周擴(kuò)散。嶺前進(jìn)行的大量試驗(yàn)表明,當(dāng)焊縫不出現(xiàn)裂紋時(shí),節(jié)點(diǎn)受力情況也常常不能滿足坡口焊縫近處梁翼緣母材不出現(xiàn)超應(yīng)力的要求。日本利用震前帶有工藝孔的節(jié)點(diǎn),在試驗(yàn)荷載下由應(yīng)變儀測(cè)得的工藝孔端點(diǎn)翼緣內(nèi)外的應(yīng)變分布,應(yīng)變集中傾向出現(xiàn)在翼緣外側(cè)端部,內(nèi)側(cè)則在工藝孔端部,最大應(yīng)變發(fā)生在工藝孔端點(diǎn)位置上。應(yīng)變集中的原因,不僅大于工藝孔造成的不連續(xù)性,還在于工藝孔部分梁腹板負(fù)擔(dān)的一部分剪力由翼緣去承擔(dān)了,使翼緣和柱隔板上產(chǎn)生了二階彎曲應(yīng)力。這些試驗(yàn)與分析均指出,今后對(duì)節(jié)點(diǎn)性能的改進(jìn),不僅應(yīng)改善焊縫,而且還應(yīng)降低梁翼緣坡口焊縫處的應(yīng)力水平。

  3.5其它因素[3]

  有很多其它因素也被認(rèn)為對(duì)節(jié)點(diǎn)破壞產(chǎn)生潛在影響,包括:梁的屈服應(yīng)力比規(guī)定的最小值高出很多;柱翼緣板在厚度方向的抗拉強(qiáng)度和延性不確定;柱節(jié)點(diǎn)域過(guò)大的剪切屈服和變形產(chǎn)生不利影響;組合樓板產(chǎn)生負(fù)面影響。這些影響因素可能還需要一定時(shí)間進(jìn)行爭(zhēng)論,才能弄清楚。

  4.改進(jìn)節(jié)點(diǎn)設(shè)計(jì)的途徑

  4.1將塑性鉸的位置外移[2][3][4]

  在北嶺地震之前,美國(guó)UBC和NEHRP兩本法規(guī)對(duì)節(jié)點(diǎn)設(shè)計(jì)的規(guī)定,都是根據(jù)在柱面產(chǎn)生塑性鉸的假定提出的。由于在北嶺地震中發(fā)現(xiàn)梁在柱面并沒(méi)有產(chǎn)生塑性變性,卻出現(xiàn)了裂縫。切口處的破壞是由三軸應(yīng)力引起的,從而導(dǎo)致了脆性破壞。過(guò)去采用的焊接鋼框架節(jié)點(diǎn)標(biāo)準(zhǔn)構(gòu)造,不能提供可靠的非彈性變形。試驗(yàn)表明,其節(jié)點(diǎn)轉(zhuǎn)動(dòng)能力不超過(guò)O.005rad,大大小于SAC建議的最小塑性轉(zhuǎn)動(dòng)能力0.03rad.另一方面,從受力情況看,塑性鉸出現(xiàn)在柱面附近的梁上,還可能在柱翼緣的材料中引起很大的厚度方向應(yīng)變,并對(duì)焊縫金屬及其周圍的熱影響區(qū)提出較高的塑性變形要求,這些情況也可能導(dǎo)致脆性破壞。因此,為了取得可靠的性能,最好還是將梁柱連接在構(gòu)造上使塑性鉸外移。將塑性位置從柱面外移有兩種方法,一種是將節(jié)點(diǎn)部位局部加強(qiáng),一種是在離開(kāi)柱面一定距離處將梁截面局部削弱。鋼梁中的塑性鉸典型長(zhǎng)度約為梁高的一半,當(dāng)對(duì)節(jié)點(diǎn)局部加強(qiáng)時(shí),可取塑性鉸位置為距加強(qiáng)部分的邊緣處梁高的1/3.節(jié)點(diǎn)局部加強(qiáng)固然也可使塑性鉸外移,但應(yīng)十分注意不要因此出現(xiàn)弱柱,有背強(qiáng)柱弱梁的原則。

  也有一部分專業(yè)技術(shù)人員認(rèn)為,在構(gòu)造上采取某些措施仍可使塑性鉸出現(xiàn)在柱面附近,這些措施包括限制構(gòu)件的截面,控制梁柱鋼材的有關(guān)強(qiáng)度,使母材和焊縫金屬有足夠的沖擊韌性,在節(jié)點(diǎn)構(gòu)件上消除缺口效應(yīng)等。但是由于沒(méi)有足夠的研究來(lái)肯定這些建議,使得這種建議在美國(guó)遲遲未能落實(shí)。而將塑性鉸自柱面外移的建議,試驗(yàn)已表明是可行的和行之有效的。目前,美國(guó)對(duì)節(jié)點(diǎn)局部加強(qiáng)及梁截面減弱,都已提出了若干構(gòu)造方案。實(shí)際上,將梁截面減弱使塑性鉸外移的方法,早在北嶺地震以前即有學(xué)者提出過(guò),北嶺地震后又作了研究,在技術(shù)上己較成熟[4],從近期在美國(guó)鹽湖城建造的25層辦公樓中采用的犬骨式(dog-bone)連接,就可以看到它的構(gòu)造細(xì)節(jié)。目前,美國(guó)雖未提出今后在抗震框架中推薦采用何種節(jié)點(diǎn)形式,但從實(shí)際情況看,上述犬骨式連接已成為主導(dǎo)形式[3].因它制作方便、省工,由美國(guó)公司設(shè)計(jì)的我國(guó)天津國(guó)貿(mào)大廈鋼框架中也已采用了這種節(jié)點(diǎn)形式。

  日本阪神地震后,沒(méi)有象美國(guó)采用將塑性鉸外移的方案。日本1996年發(fā)表的《鋼結(jié)構(gòu)工程技術(shù)指針》和1997年發(fā)表的《鋼結(jié)構(gòu)技術(shù)指針》JASS6等,僅提出了鋼框架梁柱連接節(jié)點(diǎn)的構(gòu)造改進(jìn)形式,對(duì)節(jié)點(diǎn)構(gòu)造特別是扇形切角工藝孔作了不少規(guī)定,目的也是消除可能出現(xiàn)的裂縫,保證結(jié)構(gòu)的非彈性變形。也就是說(shuō),日本與美國(guó)分別采用了不同的避免脆性破壞的途徑。

  4.2梁冀緣焊縫襯板缺口效應(yīng)的處理[11][6]

  在北嶺地震前,美國(guó)鋼框架節(jié)點(diǎn)施工中,通常將襯板和引弧板焊接后留在原處,這種做法,如前所述存在缺口效應(yīng),會(huì)導(dǎo)致開(kāi)裂,現(xiàn)在則在焊后將下翼緣的襯板和引弧板割除,同時(shí)對(duì)焊縫進(jìn)行檢查[11].正如前面曾指出的,在下翼緣的焊縫中部由于焊條通過(guò)切角困難,焊接和探傷操作都要被迫中斷,通常存在缺陷,割除襯板后可以目視觀察,從而減少在此部位不易查看到的裂紋。襯板和引弧板可用氣刨割除后再清根補(bǔ)焊,但費(fèi)用較高,操作不慎還可能傷及母材。研究表明,襯板也可不去除,而將襯板底面邊緣與柱焊接,缺點(diǎn)是無(wú)法象去除襯板后能對(duì)焊縫進(jìn)行仔細(xì)檢查。

  由于上翼緣焊縫處襯板的缺口效應(yīng)不嚴(yán)重,而且它對(duì)焊接和超探也沒(méi)有妨礙,出于費(fèi)用考慮,割除上翼緣襯板可能不合算,如果將上翼緣襯板邊緣用焊縫封閉,試驗(yàn)表明并無(wú)利影響,因此美國(guó)現(xiàn)時(shí)做法是上翼緣襯板仍然保留并用焊縫封口。

  坡口焊縫的引弧板,在上下翼緣處通常都切除,因?yàn)橐『蜏缁√幫ǔ6加泻芏嗳庇脷馇星谐筮€需打磨,才能消除潛在的裂縫源。

  在消除襯板的缺口效應(yīng)方面,日本是非常重視的。在阪神地震后發(fā)表的技術(shù)規(guī)定中,對(duì)采用H型鋼梁、組合梁,以及采用組合梁時(shí)梁預(yù)先焊接或與襯板同時(shí)裝配,不論是否切角,均采用襯板,對(duì)其構(gòu)造包括引弧板,分別作了詳細(xì)規(guī)定。

  4.3扇形切角構(gòu)造的改進(jìn)[8][9]

  在日本阪神大地震中,由于扇形切角工藝孔的端部起點(diǎn)存在產(chǎn)生裂縫的危險(xiǎn),是否設(shè)置形切角以及如何設(shè)置,已成為關(guān)系到抗震安全的一項(xiàng)重要問(wèn)題。日本震后發(fā)表的技術(shù)規(guī)范中,對(duì)扇形切角的設(shè)置也提出一系列規(guī)定,包括不開(kāi)扇形切角和開(kāi)扇形切角兩大類,并規(guī)定扇形切角可采用不同形狀;對(duì)于柱貫通形和梁貫通形節(jié)點(diǎn)分別規(guī)定了不同的構(gòu)造形式。柱貫通型節(jié)點(diǎn)的扇形切角形式有兩種,其特點(diǎn)是將扇形切角端部與梁翼緣連接處圓弧半徑減小,以便減少應(yīng)力集中。日本早就研究不設(shè)扇形切角以提高梁變形能力的方案,在最近公布的技術(shù)規(guī)定中,根據(jù)目前的焊接技術(shù)水平已將此種方案付諸實(shí)施[8][9].

  4.4選用有較高沖擊韌性的焊縫[2][6]

  如前所述,焊縫沖擊韌性不足會(huì)引起節(jié)點(diǎn)破壞。那么焊縫究竟要有多大的沖擊韌性才能防止裂紋出現(xiàn)呢?美國(guó)提出,焊縫的恰帕沖擊韌性(CVN)最小值取-29℃時(shí)27J(相當(dāng)于-200F時(shí)20ft-1bs)是合適的,可以發(fā)展成為事實(shí)上的標(biāo)準(zhǔn)。在最近美國(guó)的實(shí)際工程中,采用E71T-8型和E70TG-K2型焊條的普通手工焊電弧焊已表明焊縫最小沖擊韌性可滿足上述要求,而采用E7018型藥芯焊條的‘貼緊焊’焊縫沖擊韌性值更高,但都必須按AWS規(guī)定的焊接和探傷方法操作。

  4.5將梁腹板與柱焊接[3]

  美國(guó)SAC在采用犬骨式連接時(shí)建議:將以往的腹板栓接改為焊接,用全熔透坡口焊縫將梁腹板直接焊在柱上或通過(guò)較厚連接板焊接。在北嶺地震前,就已有很多研究指出腹板焊接比栓接性能好,它能更好地傳力,從而減小梁冀緣和翼緣坡口焊縫的應(yīng)力。日本在阪神地震前的研究也已指出,梁端腹板用高強(qiáng)度螺栓連接時(shí),與焊接相比抗彎能力變小,塑性變形能力有明顯差異,但在日本新規(guī)定中尚未看到與美國(guó)提出的相類似的要求。

  5 .美、日節(jié)點(diǎn)構(gòu)造的比較、根據(jù)美、日鋼框架梁-柱節(jié)點(diǎn)構(gòu)造及震后的改進(jìn)情況,可以看到下列差異:

  1)美國(guó)認(rèn)為梁端不能產(chǎn)生塑性變形,采取了將塑性鉸外移的基本對(duì)策,提出將節(jié)點(diǎn)局部加強(qiáng)或?qū)⒘壕植肯魅醯姆椒?,雖然目前尚無(wú)定論,但從實(shí)際發(fā)展情況看,因削弱梁截面的方法省工、效果好,已在某些工程中采用。但日本卻沒(méi)有采用將塑性鉸外移的方法,而是采取在原構(gòu)造的基礎(chǔ)上消除裂縫的病灶的方法。

  2)兩國(guó)都注意到了梁翼緣坡口焊縫的焊接襯板邊緣存在的缺口效應(yīng)所帶來(lái)的嚴(yán)重后果,在北嶺地震和神地震后都采取了相應(yīng)對(duì)策。美國(guó)SAC建議,下翼緣焊縫的襯板宜割除,然后清根補(bǔ)焊;考慮上翼緣焊縫缺陷一般較少,受力條件較有利以及費(fèi)用等原因,可對(duì)襯邊緣用焊縫封閉。而日本則對(duì)H型鋼梁和焊接組合梁(包括梁先焊好和梁與襯板時(shí)裝配兩種情況)以及節(jié)點(diǎn)為柱貫通型或梁貫通型時(shí)襯板的設(shè)置,作了詳細(xì)規(guī)定。

  3)美國(guó)在梁腹板端部襯板通過(guò)處采用矩形切角(端部呈半圓形),而不象日本采用圓弧形切角,由于腹板受彎矩較大時(shí)將連接板與腹板焊接,從有關(guān)震害情況報(bào)導(dǎo)看,沒(méi)有發(fā)現(xiàn)這種形式的切角引發(fā)多少裂縫。日本為消除梁端扇形切角端部的應(yīng)力集中,作出一系列規(guī)定,包括不作扇形切角、梁腹板用直線切剖不設(shè)扇形切角的方法以及允許采用不同形式的切角等,如在與梁翼緣連接處將曲率半徑變小和采用類似美國(guó)采用的切角形式。

  4)美日兩國(guó)都規(guī)定,節(jié)點(diǎn)按翼緣連接受彎矩和腹板連接受剪力的要求設(shè)計(jì)。美國(guó)附加規(guī)定了當(dāng)梁翼緣的受彎承載力小于截面受彎承載力的70%或梁腹板受彎承載力大于截面受彎承載力的30%時(shí),在柱連接板角部應(yīng)將梁腹板與連接板焊接。日本過(guò)去在梁端混合連接中,采用彎矩由翼緣連接承受,剪力由腹板連接承受的設(shè)計(jì)方法,螺栓一般配置一列。在94年的文獻(xiàn)[5]中指出,“現(xiàn)在該處的連接必需滿足保有耐力連接的條件,考慮腹板高強(qiáng)螺栓連接也要部分地承受彎矩,要求布置2列到3列,與以前的連接相比,抗彎承載力儲(chǔ)備提高了,這是結(jié)構(gòu)設(shè)計(jì)上的一個(gè)特點(diǎn)。”這些都是北嶺和阪神地震前的情況,震后基本上沒(méi)有改變。只是北嶺地震后,美國(guó)建議將梁腹板直接與柱焊接或與連接板焊接,以便減小梁翼緣焊縫處的焊縫應(yīng)力,日本則尚無(wú)此規(guī)定。

  5)與梁翼緣對(duì)應(yīng)位置的柱加勁肋(美國(guó)叫做連續(xù)板),日本一貫規(guī)定應(yīng)比對(duì)應(yīng)的梁翼緣厚度大一級(jí),認(rèn)為這是關(guān)鍵部位,為此多用一點(diǎn)材料是很值得的。美國(guó)過(guò)去根據(jù)傳遞梁翼緣壓力的需要確定,考慮一部分內(nèi)力由柱腹板直接傳遞,加勁肋厚度顯著小于梁翼緣厚度。而且曾有一些設(shè)計(jì)規(guī)定,例如可取厚度等于梁翼緣厚度的一半。有的文獻(xiàn)認(rèn)為,太厚了可能產(chǎn)生較大殘余應(yīng)力,最好用試驗(yàn)確定。北嶺地震中,有些加勁肋屈曲了,有的學(xué)者己提出改為與梁翼緣等厚的建議。

  6)美國(guó)強(qiáng)調(diào)焊縫沖擊韌性的重要性,規(guī)定了節(jié)點(diǎn)翼緣焊縫的沖擊韌性指標(biāo),嚴(yán)格焊接工藝的探傷要求。日本一貫重視焊接質(zhì)量,還沒(méi)有看到在這方面有什么新的規(guī)定。

  7)美國(guó)認(rèn)為,鋼材屈服點(diǎn)高出標(biāo)準(zhǔn)值較多是鋼框架震害的重要原因之一,這也許在美國(guó)特別突出。美國(guó)鋼材屈服點(diǎn)超過(guò)標(biāo)準(zhǔn)值很多,過(guò)去就有報(bào)導(dǎo),如低碳鋼A36的屈服強(qiáng)度可高達(dá)48ksi,抗拉強(qiáng)度可高達(dá)701Csi,它使連接實(shí)際要求的承載力大大提高,當(dāng)按設(shè)計(jì)不能滿足時(shí),就要出現(xiàn)破壞。根據(jù)美國(guó)型鋼生產(chǎn)商研究會(huì)所作調(diào)查和建議,AISC于97年規(guī)定將框架連接計(jì)算中的強(qiáng)度增大系數(shù)由過(guò)去的1.2提高到1.5(對(duì)A36)和1.3(對(duì)A572),其它鋼號(hào)仍保留1.2,強(qiáng)柱弱梁條件式中柱的抗彎承載力也作了相應(yīng)提高。

  6.我國(guó)采取的對(duì)策

  我國(guó)早期的高層建筑鋼結(jié)構(gòu)基本上都是國(guó)外設(shè)計(jì)的,我國(guó)的設(shè)計(jì)施工規(guī)程是在學(xué)習(xí)國(guó)外先進(jìn)技術(shù)的基礎(chǔ)上制訂的。由于日本設(shè)計(jì)的我國(guó)高層鋼結(jié)構(gòu)建筑較多,我國(guó)的設(shè)計(jì)、制作和安裝人員對(duì)日本的鋼結(jié)構(gòu)構(gòu)造方法比較熟悉,設(shè)計(jì)規(guī)定特別是節(jié)點(diǎn)設(shè)計(jì),大部分是參照日本規(guī)定適當(dāng)考慮我國(guó)特點(diǎn)制訂的,部分規(guī)定吸收了美國(guó)的經(jīng)驗(yàn)。美國(guó)北嶺地震和日本阪神地震后所發(fā)表的報(bào)導(dǎo),對(duì)我們有很大啟示,在我國(guó)抗震規(guī)范中對(duì)高層鋼結(jié)構(gòu)的節(jié)點(diǎn)設(shè)計(jì)擬提出如下建議:

  1)將梁截面局部削弱,可以確保塑性鉸外移,這種構(gòu)造具有優(yōu)越的抗震性能。根據(jù)美國(guó)報(bào)導(dǎo),梁翼緣削弱后可將受彎承載力降至0.8Mp,因鋼材用量要增多,結(jié)合我國(guó)情況作為主要形式推廣將難以接受,可將此方案列入了條文說(shuō)明,必要時(shí)可參考采用。

  2)參考日本新規(guī)定,將混合連接上端扇形切角的上部圓弧半徑改為10-15mm,與半徑35mm的切角相接;同時(shí),規(guī)定圓弧起點(diǎn)與襯板外側(cè)焊縫間保持10-15mm的間隔,以減小焊接熱影響區(qū)的相互影響。至于日本采用的不開(kāi)切角以及直通式不設(shè)切角的構(gòu)造,因?yàn)槲覀儧](méi)有經(jīng)驗(yàn),不敢貿(mào)然采用,有持今后對(duì)其性能進(jìn)行驗(yàn)證后再作取舍。

  3)在消除襯板的缺口效應(yīng)方面,考慮割除襯板弄得不好會(huì)傷及母材,且費(fèi)用較高,故采用角焊縫封閉襯板邊緣的方法。上翼緣襯板影響較小,暫不作處理。下翼緣襯板邊緣建議用6mm角焊縫沿下翼緣全寬封閉。因仰焊施工不便,角焊縫最多只能做到6mm;為了更好地消除缺口效應(yīng),應(yīng)要求焊沿翼緣全寬滿焊。

  4)在翼緣焊接腹板栓接的混合連接中,按照彎矩僅由翼緣連接承受和剪力僅由腹板連接承受的原則設(shè)計(jì)時(shí),在某些情況下是不安全的,因?yàn)楫?dāng)腹板的截面模量較大時(shí),腹板要承受一部分彎矩??拐鹨?guī)范修訂草案除規(guī)定腹板螺栓連接應(yīng)能承受梁端屈服時(shí)的剪力外,還規(guī)定當(dāng)梁翼緣截面模量小于梁截面模量70%時(shí),腹板螺栓不得少于2列,每列的螺栓數(shù)不得少于采用一列時(shí)的數(shù)量。

  5)我國(guó)在梁翼緣對(duì)應(yīng)位置設(shè)置的柱加勁肋,從一開(kāi)始就注意到了日本的經(jīng)驗(yàn),規(guī)定了與梁翼緣等厚,北嶺地震表明這樣規(guī)定是適合的。

  6)翼緣焊縫的沖擊韌性要滿足-30℃時(shí)27J的要求,這種試驗(yàn)我國(guó)過(guò)去沒(méi)有做過(guò),對(duì)于我國(guó)鋼結(jié)構(gòu)制作單位是否可以做到,需待調(diào)查后再確定是否列入。

  這時(shí)要附帶說(shuō)明,美國(guó)SAC的有關(guān)規(guī)定是適用于美國(guó)3、4類地區(qū),大體相當(dāng)于7度強(qiáng)、8、9度地區(qū),我國(guó)6度地區(qū)可適當(dāng)放寬。

  參考文獻(xiàn)

  1.W.E.Gates,M.Morden,Professional Structural Engineering EXperien Related to Welded Steel Moment Frame F0llowing tbe Northridge Earthquake.The Structural Design of Tall Building,Vo1.5,29-44(1996)

  2.Interim guidelines:Evaluation,Repair,Modiflcation and Design of Steel Moment Frames,Report No.SAC- 95-02,SAC Joint Venture一

  3.M.D.Engelhardt and t.A.Sabot,Seismic-resistant steel moment connect ions:deVelopment since the l994 Northridge earthquake,Construction Research Communicatons Limited,1997 ISSN,1365-0556

  4.E.P.Popov,T.S.Yang,S.P.Chang,Design of steel MRF Connections before and after 1994 Northridge earthquake. 5.A.Whittaker,A.Gilani,V Bertero,Evaluation of Pre-Northridge steel moment-resisting frame joints,The Strctural design of tall Buildings,7,1998,263-283

  6. AISC Seismic Provisions for Structural steel buildings,April 15,1997

  7.田中淳夫,梁端混合連接,建筑技術(shù)(日),1994,9

  8.本建筑學(xué)會(huì),鐵骨構(gòu)造技術(shù)指針(JASS 6),1996

  9.日本建筑學(xué)會(huì),鐵骨工事技術(shù)指針——工場(chǎng)制作編,5.16新技術(shù)·新工法介紹,1996

  10.吳志超,框架梁剛性連接焊接節(jié)點(diǎn),鋼結(jié)構(gòu),1997,3

  11. B.S.Taranath,Steel,Concrete,composite Design of tall Buildings,second edition,McGraw-Hill,965-975

  12.蔡益燕,美國(guó)鋼框架節(jié)點(diǎn)抗震設(shè)計(jì)研究動(dòng)向,高層建筑抗震技術(shù)交流會(huì)論文集,1997.11.9-11.12 P187-196,廣東·珠海,中國(guó)抗震防災(zāi)研究會(huì)·高層建筑抗震專業(yè)委員會(huì)

   
發(fā)布:2007-07-27 12:30    編輯:泛普軟件 · xiaona    [打印此頁(yè)]    [關(guān)閉]
相關(guān)文章:

泛普工程項(xiàng)目管理軟件系統(tǒng)其他應(yīng)用

項(xiàng)目管理工具 禪道項(xiàng)目管理軟件 夢(mèng)龍項(xiàng)目管理軟件 微軟項(xiàng)目管理軟件 裝飾管理系統(tǒng) 裝修預(yù)算軟件 項(xiàng)目計(jì)劃軟件 項(xiàng)目進(jìn)度管理軟件 軟件項(xiàng)目管理工具 材料管理軟件 工程項(xiàng)目管理軟件系統(tǒng) 項(xiàng)目管理系統(tǒng) 施工管理軟件 建筑工程項(xiàng)目管理軟件 工程管理軟件